Search results
Results from the WOW.Com Content Network
In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure
Since the quadratic form is a scalar quantity, = (). Next, by the cyclic property of the trace operator, [ ()] = [ ()]. Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity of the expectation operator that
The conditional variance tells us how much variance is left if we use to "predict" Y. Here, as usual, E ( Y ∣ X ) {\displaystyle \operatorname {E} (Y\mid X)} stands for the conditional expectation of Y given X , which we may recall, is a random variable itself (a function of X , determined up to probability one).
In probability theory, the law of total variance [1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then
which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...
Because of the reciprocity of estimator-variance and Fisher information, minimizing the variance corresponds to maximizing the information. When the linear (or linearized) statistical model has several parameters, the mean of the parameter estimator is a vector and its variance is a matrix. The inverse of the variance matrix is called the ...
To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows.
[4]: 29 The general form of the variance function is presented under the exponential family context, as well as specific forms for Normal, Bernoulli, Poisson, and Gamma. In addition, we describe the applications and use of variance functions in maximum likelihood estimation and quasi-likelihood estimation.