enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance. Variance is a measure of dispersion, meaning it is a measure

  3. Quadratic form (statistics) - Wikipedia

    en.wikipedia.org/wiki/Quadratic_form_(statistics)

    Since the quadratic form is a scalar quantity, = ⁡ (). Next, by the cyclic property of the trace operator, ⁡ [⁡ ()] = ⁡ [⁡ ()]. Since the trace operator is a linear combination of the components of the matrix, it therefore follows from the linearity of the expectation operator that

  4. Conditional variance - Wikipedia

    en.wikipedia.org/wiki/Conditional_variance

    The conditional variance tells us how much variance is left if we use ⁡ to "predict" Y. Here, as usual, E ⁡ ( Y ∣ X ) {\displaystyle \operatorname {E} (Y\mid X)} stands for the conditional expectation of Y given X , which we may recall, is a random variable itself (a function of X , determined up to probability one).

  5. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    In probability theory, the law of total variance [1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then

  6. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    which is an unbiased estimator of the variance of the mean in terms of the observed sample variance and known quantities. If the autocorrelations are identically zero, this expression reduces to the well-known result for the variance of the mean for independent data. The effect of the expectation operator in these expressions is that the ...

  7. Fisher information - Wikipedia

    en.wikipedia.org/wiki/Fisher_information

    Because of the reciprocity of estimator-variance and Fisher information, minimizing the variance corresponds to maximizing the information. When the linear (or linearized) statistical model has several parameters, the mean of the parameter estimator is a vector and its variance is a matrix. The inverse of the variance matrix is called the ...

  8. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    To find a second-order approximation for the covariance of functions of two random variables (with the same function applied to both), one can proceed as follows.

  9. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    [4]: 29 The general form of the variance function is presented under the exponential family context, as well as specific forms for Normal, Bernoulli, Poisson, and Gamma. In addition, we describe the applications and use of variance functions in maximum likelihood estimation and quasi-likelihood estimation.