Search results
Results from the WOW.Com Content Network
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO 2). Usually, decarboxylation refers to a reaction of carboxylic acids , removing a carbon atom from a carbon chain.
The reaction mechanism involves a two-stage radical process: electrochemical decarboxylation gives a radical intermediate, which combine to form a covalent bond. [2] As an example, electrolysis of acetic acid yields ethane and carbon dioxide: CH 3 COOH → CH 3 COO − → CH 3 COO· → CH 3 · + CO 2 2CH 3 · → CH 3 CH 3
This enzyme complex catalyzes the oxidative decarboxylation of branched, short-chain alpha-ketoacids. BCKDC is a member of the mitochondrial α-ketoacid dehydrogenase complex family, which also includes pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, key enzymes that function in the Krebs cycle.
Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2] This multi-enzyme complex is related structurally and functionally to the oxoglutarate dehydrogenase and branched-chain oxo-acid dehydrogenase multi-enzyme complexes.
Decarboxylation reaction reactions are typically quite thermodynamically favorable due to the entropic contribution of cleaving a single molecule into two, one of which is a gas. Conversely, we can expect carboxylation reactions to be energy-requiring, and we should not be surprised to learn ATP hydrolysis is coupled to carboxylation.
Decarboxylation and decarbonylation, collectively referred to as deCO x reactions, accomplish the goal of eliminating oxygen by removing it in the form of carbon dioxide or carbon monoxide. [8] These processes show several distinct advantages over hydrodeoxygenation (HDO).
Glucose can be shortened by oxidation and decarboxylation to generate arabinose, a reaction known as the Ruff degradation. [1] To increase the glucose carbon chain, a series of chemical reactions can be used to add one more carbon at the aldehyde end of glucose; this process is known as the Kiliani–Fischer synthesis. [2]
In several reactions, including that of pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and transketolase, TPP catalyses the reversible decarboxylation reaction (aka cleavage of a substrate compound at a carbon-carbon bond connecting a carbonyl group to an adjacent reactive group—usually a carboxylic acid or an alcohol).