Search results
Results from the WOW.Com Content Network
If μ is 1 all values of x less than or equal to 1/2 are fixed points of the system. If μ is greater than 1 the system has two fixed points, one at 0, and the other at μ/(μ + 1). Both fixed points are unstable, i.e. a value of x close to either fixed point will move away from it, rather than towards it. For example, when μ is 1.5 there is a ...
The transitive extension of R 1 would be denoted by R 2, and continuing in this way, in general, the transitive extension of R i would be R i + 1. The transitive closure of R, denoted by R* or R ∞ is the set union of R, R 1, R 2, ... . [8] The transitive closure of a relation is a transitive relation. [8]
For example, the natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1. The empty relation R (defined so that aRb is never true) on a set X is vacuously symmetric and transitive; however, it is not reflexive (unless X itself is empty).
Again, the previous 3 alternatives are far from being exhaustive; as an example over the natural numbers, the relation xRy defined by x > 2 is neither symmetric (e.g. 5R1, but not 1R5) nor antisymmetric (e.g. 6R4, but also 4R6), let alone asymmetric. Transitive for all x, y, z ∈ X, if xRy and yRz then xRz.
The Holt graph is the smallest half-transitive graph. The lack of reflectional symmetry in this drawing highlights the fact that edges are not equivalent to their inverse. Every connected symmetric graph must be vertex-transitive and edge-transitive, and the converse is true for graphs of odd degree, [2] so that half-transitive graphs of odd ...
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
For instance, to solve the inequality 4x < 2x + 1 ≤ 3x + 2, it is not possible to isolate x in any one part of the inequality through addition or subtraction. Instead, the inequalities must be solved independently, yielding x < 1 / 2 and x ≥ −1 respectively, which can be combined into the final solution −1 ≤ x < 1 / 2 .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion.