Search results
Results from the WOW.Com Content Network
The Problem of Moments. New York: American mathematical society. ISBN 978-1-4704-1228-9. Akhiezer, Naum I. (1965). The classical moment problem and some related questions in analysis. New York: Hafner Publishing Co. (translated from the Russian by N. Kemmer) Kreĭn, M. G.; Nudel′man, A. A. (1977). The Markov Moment Problem and Extremal ...
The essential difference between this and other well-known moment problems is that this is on a bounded interval, whereas in the Stieltjes moment problem one considers a half-line [0, ∞), and in the Hamburger moment problem one considers the whole line (−∞, ∞). The Stieltjes moment problems and the Hamburger moment problems, if they are ...
De Gruyter. pp. 1– 10. ISBN 978-3-11-021530-4. (Chapter 1 Laplace transforms and completely monotone functions) D. V. Widder (1946). The Laplace Transform. Princeton University Press. See Chapter III The Moment Problem (pp. 100 - 143) and Chapter IV Absolutely and Completely Monotonic Functions (pp. 144 - 179). Milan Merkle (2014).
So in this case the solution to the Hamburger moment problem is unique and μ, being the spectral measure of T, has finite support. More generally, the solution is unique if there are constants C and D such that, for all n, | m n | ≤ CD n n! (Reed & Simon 1975, p. 205). This follows from the more general Carleman's condition.
The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).
The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize ...
In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments: