Search results
Results from the WOW.Com Content Network
The 2N3906 is a commonly used PNP bipolar junction transistor intended for general purpose low-power amplifying or switching applications. [1] [2] It is designed for low electric current and power and medium voltage, and can operate at moderately high speeds. It is complementary to the 2N3904 NPN transistor. [3]
The NPN BJT (n-type bipolar junction transistor) and nMOS (n-type metal oxide semiconductor field effect transistor) have greater conductance than their PNP and pMOS relatives, so may be more commonly used for these outputs. Open outputs using PNP and pMOS transistors will use the opposite internal voltage rail used by NPN and nMOS transistors.
A typical use of these transistors is as a switch for moderate voltages and currents, including as drivers for small lamps, motors, and relays. [1] In switching circuits, these FETs can be used much like bipolar junction transistors, but have some advantages: high input impedance of the insulated gate means almost no gate current is required
A single common-emitter pnp-type transistor can operate correctly in saturation mode, with only ≈0.25 V voltage drop, but also with impractically high base currents. [29] A compound pnp-type transistor does not need as much drive current, but it requires at least a 1 V voltage drop. [29]
The 2N2907 is a commonly available PNP bipolar junction transistor used for general purpose low-power amplifying or switching applications. It is designed for low to medium current, low power, medium voltage, and can operate at moderately high speeds.
3D model of a TO-92 package, commonly used for small bipolar transistors. A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor (FET), uses only one kind of charge carrier.
The 2N3904 is an NPN transistor that can only switch one-third the current of the 2N2222 but has otherwise similar characteristics. The 2N3904 exhibits its forward gain (beta) peak at a lower current than the 2N2222, and is useful in amplifier applications with reduced I c , e.g., (gain peak at 10 mA for the 2N3904 but 150 mA for the 2N2222).
Figure 3: PNP version of the emitter-follower circuit, all polarities are reversed. A small voltage change on the input terminal will be replicated at the output (depending slightly on the transistor's gain and the value of the load resistance; see gain formula below). This circuit is useful because it has a large input impedance