enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    The half-angle formula for sine can be obtained by replacing with / and taking the square-root of both sides: ⁡ (/) = (⁡) /. Note that this figure also illustrates, in the vertical line segment E B ¯ {\displaystyle {\overline {EB}}} , that sin2 θ = 2 sin ⁡ θ cos ⁡ θ {\displaystyle \sin 2\theta =2\sin \theta \cos \theta } .

  3. Inverse trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_trigonometric...

    The notations sin1 (x), cos −1 (x), tan −1 (x), etc., as introduced by John Herschel in 1813, [7] [8] are often used as well in English-language sources, [1] much more than the also established sin [−1] (x), cos [−1] (x), tan [−1] (x) – conventions consistent with the notation of an inverse function, that is useful (for example ...

  4. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    [1] [2] Like other methods ... We can choose to be the principal root of , and impose the restriction / < < / by ... by using the inverse sine function. ...

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The notations sin1, cos −1, etc. are often used for arcsin and arccos, etc. When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "arcsecond".

  6. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    2.1.4 Inverse functions. ... The Dottie number is the unique real root of the equation ... The cosine double angle formula implies that sin 2 and cos 2 are, ...

  7. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  8. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  9. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    The arcsine is a partial inverse of the sine function. These considerations are particularly important for defining the inverses of trigonometric functions. For example, the sine function is not one-to-one, since ⁡ (+) = ⁡ for every real x (and more generally sin(x + 2 π n) = sin(x) for every integer n).