Search results
Results from the WOW.Com Content Network
Active vibration isolation systems contain, along with the spring, a feedback circuit which consists of a sensor (for example a piezoelectric accelerometer or a geophone), a controller, and an actuator. The acceleration (vibration) signal is processed by a control circuit and amplifier.
An accelerometer measures proper acceleration, which is the acceleration it experiences relative to freefall and is the acceleration felt by people and objects. [2] Put another way, at any point in spacetime the equivalence principle guarantees the existence of a local inertial frame, and an accelerometer measures the acceleration relative to that frame. [4]
The sensor circuit is supplied with constant current. A distinguishing feature of the IEPE principle is that the power supply and the sensor signal are transmitted via one shielded wire. Most IEPE sensors work at a constant current between 2 and 20 mA. A common value is 4 mA. The higher the constant current the longer the possible cable length.
The accuracy of the inertial sensors inside a modern inertial measurement unit (IMU) has a more complex impact on the performance of an inertial navigation system (INS). [16] Gyroscope and accelerometer sensor behavior is often represented by a model based on the following errors, assuming they have the proper measurement range and bandwidth: [17]
Crankshaft position sensor (CKP) Curb feeler; Defect detector; Engine coolant temperature sensor; Hall effect sensor; Wheel speed sensor; Airbag sensors; Automatic transmission speed sensor; Brake fluid pressure sensor; Camshaft position sensor (CMP) Cylinder Head Temperature gauge; Engine crankcase pressure sensor; Exhaust gas temperature ...
Figure 2. Schematic symbol and circuit incorporating the mechanical–electrical analogy for a piezoelectric sensor. Figure 2's detailed model includes the effects of the sensor's mechanical construction and other non-idealities. [12] The inductance L m is due to the seismic mass and inertia of the sensor itself.
Sensors are usually designed so that the gas supply is limited by diffusion, and thus the output from the sensor is linearly proportional to the gas concentration. This linear output is one of the advantages of electrochemical sensors over other sensor technologies (e.g. infrared), whose output must be linearized before they can be used.
Motion controllers have used a variety of different sensors in different combinations to detect and measure movements, sometimes as separate inputs and sometimes together to provide a more precise or more reliable input. In modern devices most of the sensors are specialized integrated circuits. The following items are examples of current and ...