Search results
Results from the WOW.Com Content Network
Calcium regulation in the human body. [6] The plasma ionized calcium concentration is regulated within narrow limits (1.3–1.5 mmol/L). This is achieved by both the parafollicular cells of the thyroid gland, and the parathyroid glands constantly sensing (i.e. measuring) the concentration of calcium ions in the blood flowing through them.
Calcium signaling is the use of calcium ions (Ca 2+) to communicate and drive intracellular processes often as a step in signal transduction. Ca 2+ is important for cellular signalling , for once it enters the cytosol of the cytoplasm it exerts allosteric regulatory effects on many enzymes and proteins .
[2] [3] Other calcium channels can also be regulated by both voltage and ligands to provide precise control over ion flow. Some cation channels allow calcium as well as other cations to pass through the membrane. Calcium channels can participate in the creation of action potentials across cell membranes. Calcium channels can also be used to ...
In any muscle cell, increased intracellular calcium causes contraction. In smooth muscle cells the elevated levels of intracellular calcium cause the opening of BK channels which in turn allow potassium ions to flow out of the cell. This causes further hyperpolarization and closing of voltage gated calcium channels, relaxation can then occur.
The Ca 2+ concentration of the vacuole may reach millimolar levels. The most striking use of Ca 2+ ions as a structural element in algae occurs in the marine coccolithophores, which use Ca 2+ to form the calcium carbonate plates, with which they are covered. Calcium is needed to form the pectin in the middle lamella of newly formed cells.
Excitation-contraction coupling in myocardium relies on sarcolemma depolarization and subsequent Ca 2+ entry to trigger Ca 2+ release from the sarcoplasmic reticulum.When an action potential depolarizes the cell membrane, voltage-gated Ca 2+ channels (e.g., L-type calcium channels) are activated.
Calcium imaging is a microscopy technique to optically measure the calcium (Ca 2+) status of an isolated cell, tissue or medium.Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca 2+ ions by fluorescence properties.
ATP-reliant ion transport pumps fail, causing the cell to become depolarized, allowing ions, including calcium (Ca 2+), to flow into the cell. The ion pumps can no longer transport calcium out of the cell, and intracellular calcium levels get too high. The presence of calcium triggers the release of the excitatory amino acid neurotransmitter ...