enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    In theory, classic RNNs can keep track of arbitrary long-term dependencies in the input sequences. The problem with classic RNNs is computational (or practical) in nature: when training a classic RNN using back-propagation, the long-term gradients which are back-propagated can "vanish", meaning they can tend to zero due to very small numbers creeping into the computations, causing the model to ...

  3. Connectionist temporal classification - Wikipedia

    en.wikipedia.org/wiki/Connectionist_temporal...

    CTC does not attempt to learn boundaries and timings: Label sequences are considered equivalent if they differ only in alignment, ignoring blanks. Equivalent label sequences can occur in many ways – which makes scoring a non-trivial task, but there is an efficient forward–backward algorithm for that.

  4. Recursive neural network - Wikipedia

    en.wikipedia.org/wiki/Recursive_neural_network

    A recursive neural network is a kind of deep neural network created by applying the same set of weights recursively over a structured input, to produce a structured prediction over variable-size input structures, or a scalar prediction on it, by traversing a given structure in topological order.

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.

  6. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    An example application is the problem of translating a natural language sentence into a syntactic representation such as a parse tree.This can be seen as a structured prediction problem [2] in which the structured output domain is the set of all possible parse trees.

  7. Echo state network - Wikipedia

    en.wikipedia.org/wiki/Echo_state_network

    Another feature of the ESN is the autonomous operation in prediction: if it is trained with an input that is a backshifted version of the output, then it can be used for signal generation/prediction by using the previous output as input. [4] [5]

  8. Sequential pattern mining - Wikipedia

    en.wikipedia.org/wiki/Sequential_Pattern_Mining

    Alignment problems: that deal with comparison between strings by first aligning one or more sequences; examples of popular methods include BLAST for comparing a single sequence with multiple sequences in a database, and ClustalW for multiple alignments. Alignment algorithms can be based on either exact or approximate methods, and can also be ...

  9. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    The two historically common activation functions are both sigmoids, and are described by = ⁡ = (+).The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic function, which is similar in shape but ranges from 0 to 1.