Search results
Results from the WOW.Com Content Network
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
Construct the orthocenter of triangle and three midpoints (say A', B' C' ) between vertices and orthocenter. Construct a circumcircle of A'B'C' . This is the nine-point circle, it intersects each side of the original triangle at two points: the base of altitude and midpoint. Construct an intersection of one side with the circle at midpoint now ...
Barycentric coordinates (,,) on an equilateral triangle and on a right triangle. A 3-simplex, with barycentric subdivisions of 1-faces (edges) 2-faces (triangles) and 3-faces (body). In geometry , a barycentric coordinate system is a coordinate system in which the location of a point is specified by reference to a simplex (a triangle for points ...
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]
If is the radius of the incircle of the triangle, then the triangle can be broken into three triangles of equal altitude and bases , , and . Their combined area is A = 1 2 a r + 1 2 b r + 1 2 c r = r s , {\displaystyle A={\tfrac {1}{2}}ar+{\tfrac {1}{2}}br+{\tfrac {1}{2}}cr=rs,} where s = 1 2 ( a + b + c ...
The only triangle with consecutive integers for an altitude and the sides has sides (13, 14, 15) and altitude from side 14 equal to 12. The (2, 3, 4) triangle and its multiples are the only triangles with integer sides in arithmetic progression and having the complementary exterior angle property.
The nine-point circle of a reference triangle is the circumcircle of both the reference triangle's medial triangle (with vertices at the midpoints of the sides of the reference triangle) and its orthic triangle (with vertices at the feet of the reference triangle's altitudes). [6]: p.153