enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution ...

  3. Debye model - Wikipedia

    en.wikipedia.org/wiki/Debye_model

    Reduced specific heat for KCl, TiO2, and graphite, compared with the Debye theory based on elastic measurements (solid lines). [1]In thermodynamics and solid-state physics, the Debye model is a method developed by Peter Debye in 1912 to estimate phonon contribution to the specific heat (heat capacity) in a solid. [2]

  4. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    Professionals in construction, civil engineering, chemical engineering, and other technical disciplines, especially in the United States, may use English Engineering units including the pound (lb = 0.45359237 kg) as the unit of mass, the degree Fahrenheit or Rankine (°R = ⁠ 5 / 9 ⁠ K, about 0.555556 K) as the unit of temperature increment ...

  5. Heat - Wikipedia

    en.wikipedia.org/wiki/Heat

    The temperature reached in a process was estimated by the shrinkage of a sample of clay. The higher the temperature, the more the shrinkage. This was the only available more or less reliable method of measurement of temperatures above 1000 °C (1,832 °F). But such shrinkage is irreversible. The clay does not expand again on cooling.

  6. Calorimeter constant - Wikipedia

    en.wikipedia.org/wiki/Calorimeter_constant

    A calorimeter constant (denoted Ccal) is a constant that quantifies the heat capacity of a calorimeter. It may be calculated by applying a known amount of heat to the calorimeter and measuring the calorimeter's corresponding change in temperature. In SI units, the calorimeter constant is then calculated by dividing the change in enthalpy (Δ H ...

  7. Absolute zero - Wikipedia

    en.wikipedia.org/wiki/Absolute_zero

    Absolute zero. Zero kelvin (−273.15 °C) is defined as absolute zero. Absolute zero is the lowest limit of the thermodynamic temperature scale; a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value. The fundamental particles of nature have minimum vibrational motion, retaining only quantum mechanical, zero ...

  8. Dulong–Petit law - Wikipedia

    en.wikipedia.org/wiki/Dulong–Petit_law

    Molar heat capacity of most elements at 25 °C is in the range between 2.8 R and 3.4 R: Plot as a function of atomic number with a y range from 22.5 to 30 J/mol K.. The Dulong–Petit law, a thermodynamic law proposed by French physicists Pierre Louis Dulong and Alexis Thérèse Petit, states that the classical expression for the molar specific heat capacity of certain chemical elements is ...

  9. Rankine scale - Wikipedia

    en.wikipedia.org/wiki/Rankine_scale

    The Rankine scale is used in engineering systems where heat computations are done using degrees Fahrenheit. [3] The symbol for degrees Rankine is °R [2] (or °Ra if necessary to distinguish it from the Rømer and Réaumur scales). By analogy with the SI unit kelvin, some authors term the unit Rankine, omitting the degree symbol. [4][5]