Ads
related to: circle equation in polar coordinates worksheet pdf free
Search results
Results from the WOW.Com Content Network
The pole of a line L in a circle C is a point Q that is the inversion in C of the point P on L that is closest to the center of the circle. Conversely, the polar line (or polar) of a point Q in a circle C is the line L such that its closest point P to the center of the circle is the inversion of Q in C.
where a is the radius of the circle, (,) are the polar coordinates of a generic point on the circle, and (,) are the polar coordinates of the centre of the circle (i.e., r 0 is the distance from the origin to the centre of the circle, and φ is the anticlockwise angle from the positive x axis to the line connecting the origin to the centre of ...
Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are
Any two polar circles of two triangles in an orthocentric system are orthogonal. [1]: p. 177 The polar circles of the triangles of a complete quadrilateral form a coaxal system. [1]: p. 179 The most important property of the polar circle is the triangle is self-polar; the polar of each side/point is the opposite side/point.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL; Download QR code
Given a circle C through a point O, and line L tangent to the circle at point O: for each point Q on C, define the point P such that PQ is parallel to the tangent line L, and PQ = OQ. The collection of points P forms the bifolium. [1] In polar coordinates, the bifolium's equation is = .
Orthogonal trajectories are used in mathematics, for example as curved coordinate systems (i.e. elliptic coordinates) and appear in physics as electric fields and their equipotential curves. If the trajectory intersects the given curves by an arbitrary (but fixed) angle, one gets an isogonal trajectory .
Ads
related to: circle equation in polar coordinates worksheet pdf free