Search results
Results from the WOW.Com Content Network
In particular, we can adjust it to merge (link) and split (cut) in O(log(n)) amortized time. Link/cut trees divide each tree in the represented forest into vertex-disjoint paths, where each path is represented by an auxiliary data structure (often splay trees, though the original paper predates splay trees and thus uses biased binary search ...
A recursive tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then the label of u is smaller than the label of v). In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to the root; every vertex has a unique parent, except the root has no parent. [24]
Trees are commonly used to represent or manipulate hierarchical data in applications such as: File systems for: Directory structure used to organize subdirectories and files (symbolic links create non-tree graphs, as do multiple hard links to the same file or directory) The mechanism used to allocate and link blocks of data on the storage device
A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.
A vertex cut or separating set of a connected graph G is a set of vertices whose removal renders G disconnected. The vertex connectivity κ(G) (where G is not a complete graph) is the size of a smallest vertex cut. A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater.
In graph theory, a branch of mathematics, the triconnected components of a biconnected graph are a system of smaller graphs that describe all of the 2-vertex cuts in the graph. An SPQR tree is a tree data structure used in computer science , and more specifically graph algorithms , to represent the triconnected components of a graph.
3. Vertex splitting (sometimes called vertex cleaving) is an elementary graph operation that splits a vertex into two, where these two new vertices are adjacent to the vertices that the original vertex was adjacent to. The inverse of vertex splitting is vertex contraction. square 1.
Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5] Monochromatic triangle [3]: GT6 Pathwidth, [6] or, equivalently, interval thickness, and vertex separation number [7] Rank coloring; k-Chinese postman