Search results
Results from the WOW.Com Content Network
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The prime numbers p n , with n ≥ 1 . A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers.
For example, to form the "pea pattern" one reads the previous term and counts all instances of each digit, listed in order of their first appearance, not just those occurring in a consecutive block. So beginning with the seed 1, the pea pattern proceeds 1, 11 ("one 1"), 21 ("two 1s"), 1211 ("one 2 and one 1"), 3112 ("three 1s and one 2 ...
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
With the exceptions of 1, 8 and 144 (F 1 = F 2, F 6 and F 12) every Fibonacci number has a prime factor that is not a factor of any smaller Fibonacci number (Carmichael's theorem). [56] As a result, 8 and 144 ( F 6 and F 12 ) are the only Fibonacci numbers that are the product of other Fibonacci numbers.
The table consisted of 26 unit fraction series of the form 1/n written as sums of other rational numbers. [9] The Akhmim wooden tablet wrote difficult fractions of the form 1/n (specifically, 1/3, 1/7, 1/10, 1/11 and 1/13) in terms of Eye of Horus fractions which were fractions of the form 1 / 2 k and remainders expressed in terms of a ...
It follows from the first equality that 2 7 × 5 ≡ −1 (mod 641) and therefore (raising to the fourth power) that 2 28 × 5 4 ≡ 1 (mod 641). On the other hand, the second equality implies that 5 4 ≡ −2 4 (mod 641). These congruences imply that 2 32 ≡ −1 (mod 641).
In abstract algebra, the trigintaduonions, also known as the 32-ions, 32-nions, 2 5-nions, or sometimes pathions (), [1] [2] form a 32-dimensional noncommutative and nonassociative algebra over the real numbers, [3] [4] usually represented by the capital letter T, boldface T or blackboard bold.
Many properties of a natural number n can be seen or directly computed from the prime factorization of n.. The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n.