enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.

  3. Set (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Set_(abstract_data_type)

    The unsorted multiset is standard as of C++11; previously SGI's STL provides the hash_multiset class, which was copied and eventually standardized. For Java, third-party libraries provide multiset functionality: Apache Commons Collections provides the Bag and SortedBag interfaces, with implementing classes like HashBag and TreeBag.

  4. Family of sets - Wikipedia

    en.wikipedia.org/wiki/Family_of_sets

    In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection of subsets of a given set is called a family of subsets of , or a family of sets over .

  5. Associative containers (C++) - Wikipedia

    en.wikipedia.org/wiki/Associative_containers_(C++)

    Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: set, map, multiset, multimap. Each of these containers differ only on constraints placed on their elements.

  6. Unordered associative containers (C++) - Wikipedia

    en.wikipedia.org/wiki/Unordered_associative...

    Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: unordered_set, unordered_map, unordered_multiset, unordered_multimap. Each of these containers differ only on constraints placed on their elements.

  7. HyperLogLog - Wikipedia

    en.wikipedia.org/wiki/HyperLogLog

    HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...

  8. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...

  9. Cardinality (data modeling) - Wikipedia

    en.wikipedia.org/wiki/Cardinality_(data_modeling)

    In the object-oriented application programming paradigm, which is related to database structure design, UML class diagrams may be used for object modeling. In that case, object relationships are modeled using UML associations, and multiplicity is used on those associations to denote cardinality. Here are some examples: [5]