Search results
Results from the WOW.Com Content Network
Borrowing from complex analysis, this is sometimes called an essential singularity. The possible cases at a given value for the argument are as follows. A point of continuity is a value of for which () = = (+), as one expects for a smooth function. All the values must be finite.
Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.
In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z 0 is an isolated singularity of a function f if there exists an open disk D centered at z 0 such that f is holomorphic on D \ {z 0}, that is, on the set obtained from D by taking z 0 out.
In complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits striking behavior. The category essential singularity is a "left-over" or default group of isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity ...
In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point. For instance, the (unnormalized) sinc function, as defined by
The complex plane extended by a point at infinity is called the Riemann sphere. If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros.
This is another branch of singularity theory, based on earlier work of Hassler Whitney on critical points. Roughly speaking, a critical point of a smooth function is where the level set develops a singular point in the geometric sense. This theory deals with differentiable functions in general, rather than just polynomials.
A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.