enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Singularity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Singularity_(mathematics)

    Borrowing from complex analysis, this is sometimes called an essential singularity. The possible cases at a given value for the argument are as follows. A point of continuity is a value of for which () = = (+), as one expects for a smooth function. All the values must be finite.

  3. Regular singular point - Wikipedia

    en.wikipedia.org/wiki/Regular_singular_point

    Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.

  4. Isolated singularity - Wikipedia

    en.wikipedia.org/wiki/Isolated_singularity

    In complex analysis, a branch of mathematics, an isolated singularity is one that has no other singularities close to it. In other words, a complex number z 0 is an isolated singularity of a function f if there exists an open disk D centered at z 0 such that f is holomorphic on D \ {z 0}, that is, on the set obtained from D by taking z 0 out.

  5. Essential singularity - Wikipedia

    en.wikipedia.org/wiki/Essential_singularity

    In complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits striking behavior. The category essential singularity is a "left-over" or default group of isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity ...

  6. Removable singularity - Wikipedia

    en.wikipedia.org/wiki/Removable_singularity

    In complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point. For instance, the (unnormalized) sinc function, as defined by

  7. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    The complex plane extended by a point at infinity is called the Riemann sphere. If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its zeros.

  8. Singularity theory - Wikipedia

    en.wikipedia.org/wiki/Singularity_theory

    This is another branch of singularity theory, based on earlier work of Hassler Whitney on critical points. Roughly speaking, a critical point of a smooth function is where the level set develops a singular point in the geometric sense. This theory deals with differentiable functions in general, rather than just polynomials.

  9. Singular point of a curve - Wikipedia

    en.wikipedia.org/wiki/Singular_point_of_a_curve

    A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.