enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...

  3. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Equivalently, the tangents of the ellipsoid containing point V are the lines of a circular cone, whose axis of rotation is the tangent line of the hyperbola at V. [ 15 ] [ 16 ] If one allows the center V to disappear into infinity, one gets an orthogonal parallel projection with the corresponding asymptote of the focal hyperbola as its direction.

  4. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    The semi-major axis (major semiaxis) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus, and to the perimeter. The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section.

  5. Angular eccentricity - Wikipedia

    en.wikipedia.org/wiki/Angular_eccentricity

    Angular eccentricity α (alpha) and linear eccentricity (ε). Note that OA=BF=a. Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major ...

  6. Perimeter of an ellipse - Wikipedia

    en.wikipedia.org/wiki/Perimeter_of_an_ellipse

    An ellipse has two axes and two foci Unlike most other elementary shapes, such as the circle and square , there is no algebraic equation to determine the perimeter of an ellipse . Throughout history, a large number of equations for approximations and estimates have been made for the perimeter of an ellipse.

  7. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    It is a spheroid (an ellipsoid of revolution) whose minor axis (shorter diameter), which connects the geographical North Pole and South Pole, is approximately aligned with the Earth's axis of rotation. The ellipsoid is defined by the equatorial axis (a) and the polar axis (b); their radial difference is slightly more than 21 km, or 0.335% of a ...

  8. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The prolate spheroid is generated by rotation about the z-axis of an ellipse with semi-major axis c and semi-minor axis a; therefore, e may again be identified as the eccentricity. (See ellipse.) [3] These formulas are identical in the sense that the formula for S oblate can be used to calculate the surface area of a prolate spheroid and vice ...

  9. Ellipsoidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Ellipsoidal_coordinates

    An alternative parametrization exists that closely follows the angular parametrization of spherical coordinates: [1] = ⁡ ⁡, = ⁡ ⁡, = ⁡. Here, > parametrizes the concentric ellipsoids around the origin and [,] and [,] are the usual polar and azimuthal angles of spherical coordinates, respectively.