Search results
Results from the WOW.Com Content Network
An idealized strike-slip fault runs in a straight line with a vertical dip and has only horizontal motion, thus there is no change in topography due to motion of the fault. In reality, as strike-slip faults become large and developed, their behavior changes and becomes more complex. A long strike-slip fault follows a staircase-like trajectory ...
Magmatism along strike-slip faults is the process of rock melting, magma ascent and emplacement, associated with the tectonics and geometry of various strike-slip settings, most commonly occurring along transform boundaries at mid-ocean ridge spreading centres [1] and at strike-slip systems parallel to oblique subduction zones. [2]
Lateral strike-slip faults. Strike-slip faults occur when the blocks slide against each other laterally, parallel to the plane. The direction of the slip can be observed from either side of the fault, with the far block moving to the left indicating a left lateral slip, and the converse indicating a right lateral slip. See animation here [5]
Strike-slip faults with left-lateral motion are also known as sinistral faults and those with right-lateral motion as dextral faults. [19] Each is defined by the direction of movement of the ground as would be seen by an observer on the opposite side of the fault. A special class of strike-slip fault is the transform fault when it forms a plate ...
Strike-slip faults are associated with dominantly horizontal movement, leading to relatively simple linear zones of surface rupture where the fault is a simple planar structure. However, many strike-slip faults are formed of overlapping segments, leading to complex zones of normal or reverse faulting depending on the nature of the overlap.
In nature, linear features are uncommon and can help identify geologic features like faults because of their linear fault traces. [2] Dip separation can also occur when motion of the fault is perpendicular to the fault trace. That is, the fault blocks are pulled away from each other or pushed towards each other. This is known as a dip-slip ...
A thrust fault is a type of reverse fault, in which the rock above the fault is displaced upwards relative to the rock below the fault. This distinguishes reverse faults from normal faults , where the rock above the fault is displaced downwards, or strike-slip faults , where the rock on one side of the fault is displaced horizontally with ...
Diagram of fault geometry (in map view) that leads to transtension at the bend or step-over. Releasing bends are transtensional structures that form where the orientation of a strike-slip fault becomes oblique to the regional slip vector causing local extension (such as a right stepping bend on a right-lateral fault). [1]