Search results
Results from the WOW.Com Content Network
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
1–10 kPa Typical explosion peak overpressure needed to break glass windows (approximate) [40] 2 kPa Pressure of popping popcorn (very approximate) [41] [42] 2.6 kPa 0.38 psi Pressure at which water boils at room temperature (22 °C) (20 mmHg) [43] 5 kPa 0.8 psi Blood pressure fluctuation (40 mmHg) between heartbeats for a typical healthy ...
millimetre of water (3.98 °C) mmH 2 O ≈ 999.972 kg/m 3 × 1 mm × g 0 = 0.999 972 kgf/m 2 = 9.806 38 Pa: pascal (SI unit) Pa ≡ N/m 2 = kg/(m⋅s 2) = 1 Pa [34] pièze (mts unit) pz ≡ 1000 kg/m⋅s 2 = 10 3 Pa = 1 kPa pound per square foot: psf ≡ 1 lbf/ft 2: ≈ 47.880 26 Pa [33] pound per square inch: psi ≡ 1 lbf/in 2: ≈ 6.894 757 ...
The pascal (Pa) or kilopascal (kPa) as a unit of pressure measurement is widely used throughout the world and has largely replaced the pounds per square inch (psi) unit, except in some countries that still use the imperial measurement system or the US customary system, including the United States.
Water vapor is not included, as this is highly variable. ... P = 14.696 psi = 2116.22 psf = 101325 Pa = 760 mm Hg = 29.92 ... Calculate 28 properties of 1976 Standard ...
The ground pressure of motorized vehicles is often compared with the ground pressure of a human foot, which can be 60 – 80 kPa while walking or as much as 13 MPa for a person in spike heels. [ 3 ] Increasing the size of the contact area on the ground (the footprint ) in relation to the weight decreases the unit ground pressure.
Data in the table above is given for water–steam equilibria at various temperatures over the entire temperature range at which liquid water can exist. Pressure of the equilibrium is given in the second column in kPa. The third column is the heat content of each gram of the liquid phase relative to water at 0 °C.
(760 mmHg = 101.325 kPa = 1.000 atm = normal pressure) This example shows a severe problem caused by using two different sets of coefficients. The described vapor pressure is not continuous—at the normal boiling point the two sets give different results. This causes severe problems for computational techniques which rely on a continuous vapor ...