enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration, their motion satisfying the geodesic equations.

  3. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    Every Riemannian symmetric space is homogeneous, and consequently is geodesically complete and has constant scalar curvature. However, Riemannian symmetric spaces also have a much stronger curvature property not possessed by most homogeneous Riemannian manifolds, namely that the Riemann curvature tensor and Ricci curvature are parallel.

  4. Complete manifold - Wikipedia

    en.wikipedia.org/wiki/Complete_manifold

    There exist non-geodesically complete compact pseudo-Riemannian (but not Riemannian) manifolds. An example of this is the Clifton–Pohl torus . In the theory of general relativity , which describes gravity in terms of a pseudo-Riemannian geometry, many important examples of geodesically incomplete spaces arise, e.g. non-rotating uncharged ...

  5. Geodesic - Wikipedia

    en.wikipedia.org/wiki/Geodesic

    Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.

  6. Hopf–Rinow theorem - Wikipedia

    en.wikipedia.org/wiki/Hopf–Rinow_theorem

    Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. [1] Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

  7. Spray (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spray_(mathematics)

    In differential geometry, a spray is a vector field H on the tangent bundle TM that encodes a quasilinear second order system of ordinary differential equations on the base manifold M. Usually a spray is required to be homogeneous in the sense that its integral curves t →Φ H t (ξ)∈ TM obey the rule Φ H t (λξ)=Φ H λt (ξ) in positive ...

  8. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    In geodesic coordinates, it is easy to check that the geodesics through zero minimize length. The topology on the Riemannian manifold is then given by a distance function d(p,q), namely the infimum of the lengths of piecewise smooth paths between p and q. This distance is realised locally by geodesics, so that in normal coordinates d(0,v ...

  9. Theorem of the three geodesics - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_three_geodesics

    A triaxial ellipsoid and its three geodesics. A geodesic, on a Riemannian surface, is a curve that is locally straight at each of its points. On the Euclidean plane the geodesics are lines, and on a sphere the geodesics are great circles. The shortest path in the surface between two points is always a geodesic, but other geodesics may exist as ...