Search results
Results from the WOW.Com Content Network
Cornelis Bernardus van Niel (also known as Kees van Niel; November 4, 1897 – March 10, 1985) was a Dutch-American microbiologist. He introduced the study of general microbiology to the United States and made key discoveries explaining the chemistry of photosynthesis .
Cornelis Van Niel proposed in 1931 that photosynthesis is a case of general mechanism where a photon of light is used to photo decompose a hydrogen donor and the hydrogen being used to reduce CO 2. [11] Then in 1939, Robin Hill demonstrated that isolated chloroplasts would make oxygen, but not fix CO
Cornelis Van Niel made key discoveries explaining the chemistry of photosynthesis. By studying purple sulfur bacteria and green bacteria, he was the first to demonstrate that photosynthesis is a light-dependent redox reaction in which hydrogen reduces (donates its atoms as electrons and protons to) carbon dioxide.
They were discovered by C. B. van Niel in 1932. [1] They are related to chlorophylls , which are the primary pigments in plants , algae , and cyanobacteria . Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct .
A simplified diagram of photosynthesis. Redrawn in vector format from Image:Simple_photosynthesis_overview.PNG: Date: 18 April 2008: Source: Own work: Author: Daniel Mayer (mav) - original image Vector version by Yerpo: Other versions
The evolution of photosynthesis refers to the origin and subsequent evolution of photosynthesis, the process by which light energy is used to assemble sugars from carbon dioxide and a hydrogen and electron source such as water. It is believed that the pigments used for photosynthesis initially were used for protection from the harmful effects ...
Quantasomes are particles found in the thylakoid membrane of chloroplasts in which photosynthesis takes place. They are embedded in a paracrystalline array on the surface of thylakoid discs in chloroplasts. They are composed of lipids and proteins that include various photosynthetic pigments and redox carriers.
The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.