Search results
Results from the WOW.Com Content Network
In meteorology, air currents are concentrated areas of winds. They are mainly due to differences in atmospheric pressure or temperature . They are divided into horizontal and vertical currents; both are present at mesoscale while horizontal ones dominate at synoptic scale .
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
Knowing the wind sampling average is important, as the value of a one-minute sustained wind is typically 14% greater than a ten-minute sustained wind. [16] A short burst of high speed wind is termed a wind gust ; one technical definition of a wind gust is: the maxima that exceed the lowest wind speed measured during a ten-minute time interval ...
Also actiniform. Describing a collection of low-lying, radially structured clouds with distinct shapes (resembling leaves or wheels in satellite imagery), and typically organized in extensive mesoscale fields over marine environments. They are closely related to and sometimes considered a variant of stratocumulus clouds. actinometer A scientific instrument used to measure the heating power of ...
The Equatorial Counter Current is an eastward flowing, wind-driven current which extends to depths of 100–150 metres (330–490 ft) in the Atlantic, Indian, and Pacific Oceans. More often called the North Equatorial Countercurrent (NECC) , this current flows west-to-east at about 3-10°N in the Atlantic , Indian Ocean and Pacific basins ...
In the study of fluid mechanics, researchers attempt to give a correct explanation of marine currents.Currents are caused by external driving forces such as wind, gravitational effects, coriolis forces and physical differences between various water masses, the main parameter being the difference of density that varies in function of the temperature and salinity.
The wind blowing parallel to a water surface deforms that surface as a result of shear action caused by the fast wind blowing over the stagnant water. The wind blowing over the surface applies a shear force on the surface. The wind stress is the component of this force that acts parallel to the surface per unit area.
There are three major wind patterns that lead to Ekman suction or pumping. The first are wind patterns that are parallel to the coastline. [1] Due to the Coriolis effect, surface water moves at a 90° angle to the wind current. If the wind moves in a direction causing the water to be pulled away from the coast then Ekman suction will occur. [1]