enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Prime number: A positive integer with exactly two positive divisors: itself and 1. The primes form an infinite sequence 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... Composite number: A positive integer that can be factored into a product of smaller positive integers. Every integer greater than one is either prime or composite.

  3. Integer - Wikipedia

    en.wikipedia.org/wiki/Integer

    An integer is the number zero , a positive natural number (1, 2, 3, ... An integer is positive if it is greater than zero, and negative if it is less than zero. Zero ...

  4. List of integer sequences - Wikipedia

    en.wikipedia.org/wiki/List_of_integer_sequences

    φ(n) is the number of positive integers not greater than n that are coprime with n. A000010: Lucas numbers L(n) 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... L(n) = L(n − 1) + L(n − 2) for n ≥ 2, with L(0) = 2 and L(1) = 1. A000032: Prime numbers p n: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... The prime numbers p n, with n ≥ 1. A prime number is ...

  5. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.

  6. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics.It states that every even natural number greater than 2 is the sum of two prime numbers.

  7. Abundant number - Wikipedia

    en.wikipedia.org/wiki/Abundant_number

    An abundant number whose abundance is greater than any lower number is called a highly abundant number, and one whose relative abundance (i.e. s(n)/n ) is greater than any lower number is called a superabundant number; Every integer greater than 20161 can be written as the sum of two abundant numbers. The largest even number that is not the sum ...

  8. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    Every integer greater than 2 that is not congruent to 2 mod 4 (in other words, every integer greater than 2 which is not of the form 4k + 2) is part of a primitive Pythagorean triple. (If the integer has the form 4k, one may take n = 1 and m = 2k in Euclid's formula; if the integer is 2k + 1, one may take n = k and m = k + 1.)

  9. Polite number - Wikipedia

    en.wikipedia.org/wiki/Polite_number

    The politeness of a positive number is defined as the number of ways it can be expressed as the sum of consecutive integers. For every x , the politeness of x equals the number of odd divisors of x that are greater than one. [ 13 ]