Search results
Results from the WOW.Com Content Network
The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. [1] The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also ...
Darcy–Weisbach equation. Given that the head loss h f expresses the pressure loss Δp as the height of a column of fluid,
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe.
Darcy–Weisbach equation: Fluid dynamics: Henry Darcy and Julius Weisbach: Davey–Stewartson equation: Fluid dynamics: A. Davey and K. Stewartson: Debye–Hückel equation: Electrochemistry: Peter Debye and Erich Hückel: Degasperis–Procesi equation: Mathematical physics: Antonio Degasperis and M. Procesi: Dehn–Sommerville equations ...
The Swamee–Jain equation is used to solve directly for the Darcy–Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation. It is an approximation of the implicit Colebrook–White equation.
Weisbach was the first to develop a method for solving orthogonal linear regression problems. [3] He examined the physics of steam engines, thermodynamics and mechanics. He took an interest in hydraulics and refined the Darcy equation into the still widely used Darcy–Weisbach equation. Gustav Zeuner (1828–1907) was one of his students. [3]
Darcy's law is an equation that describes the flow of a fluid through a porous medium and through a Hele-Shaw cell.The law was formulated by Henry Darcy based on results of experiments [1] on the flow of water through beds of sand, forming the basis of hydrogeology, a branch of earth sciences.