enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    In physics, Wien's displacement law states that the black-body radiation curve for different temperatures will peak at different wavelengths that are inversely proportional to the temperature. The shift of that peak is a direct consequence of the Planck radiation law , which describes the spectral brightness or intensity of black-body radiation ...

  3. File:Wien's Displacement Law Variations Chart.svg - Wikipedia

    en.wikipedia.org/wiki/File:Wien's_Displacement...

    Formulas for the various peak wavelengths and mean photon energy were taken from the Wikipedia Wien's displacement law page. The median and quartiles were computed by numerically integrating Planck's law ; however, for any who wish to avoid this, information on percentiles is given in the Planck's law article.

  4. Thermal remote sensing - Wikipedia

    en.wikipedia.org/wiki/Thermal_Remote_sensing

    Stefan–Boltzmann law: Surface temperature of any objects radiate energy and shows specific properties. These properties are calculated by Boltzmann law. 2. Wien's displacement law: Wien's displacement law explains the relation between temperature and the wavelength of radiation. It states that the wavelength of radiation emitted from a ...

  5. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    Comparison of Wien’s curve and the Planck curve. Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.

  6. Wien's law - Wikipedia

    en.wikipedia.org/wiki/Wien's_law

    Wien's law or Wien law may refer to: . Wien approximation, an equation used to describe the short-wavelength (high frequency) spectrum of thermal radiation; Wien's displacement law, an equation that describes the relationship between the temperature of an object and the peak wavelength or frequency of the emitted light

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The Stefan–Boltzmann law, also known as Stefan's law, describes the intensity of the thermal radiation emitted by matter in terms of that matter's temperature. It is named for Josef Stefan , who empirically derived the relationship, and Ludwig Boltzmann who derived the law theoretically.

  8. Scientific law - Wikipedia

    en.wikipedia.org/wiki/Scientific_law

    A scientific law is "inferred from particular facts, applicable to a defined group or class of phenomena, and expressible by the statement that a particular phenomenon always occurs if certain conditions be present". [7] The production of a summary description of our environment in the form of such laws is a fundamental aim of science.

  9. Wilhelm Wien - Wikipedia

    en.wikipedia.org/wiki/Wilhelm_Wien

    Wilhelm Carl Werner Otto Fritz Franz Wien (German: [ˈvɪlhɛlm ˈviːn] ⓘ; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.