Search results
Results from the WOW.Com Content Network
Joule heating (also known as resistive heating, resistance heating, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an ...
Between 1840 and 1843, Joule carefully studied the heat produced by an electric current. From this study, he developed Joule's laws of heating, the first of which is commonly referred to as the Joule effect. Joule's first law expresses the relationship between heat generated in a conductor and current flow, resistance, and time. [1]
In 1845, Joule published a paper entitled "The Mechanical Equivalent of Heat", in which he specified a numerical value for the amount of mechanical work required to produce a unit of heat. In particular Joule had experimented on the amount of mechanical work generated by friction needed to raise the temperature of a pound of water by one degree ...
A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...
According to the second law, in a reversible heat transfer, an element of heat transferred, , is the product of the temperature (), both of the system and of the sources or destination of the heat, with the increment of the system's conjugate variable, its entropy (): [1]
This is the definition declared in the modern International System of Units in 1960. [13] The definition of the joule as J = kg⋅m 2 ⋅s −2 has remained unchanged since 1946, but the joule as a derived unit has inherited changes in the definitions of the second (in 1960 and 1967), the metre (in 1983) and the kilogram . [14]
As a form of energy, heat has the unit joule (J) in the International System of Units (SI). In addition, many applied branches of engineering use other, traditional units, such as the British thermal unit (BTU) and the calorie. The standard unit for the rate of heating is the watt (W), defined as one joule per second.
The SI unit for heat capacity of an object is joule per kelvin (J/K or J⋅K −1). Since an increment of temperature of one degree Celsius is the same as an increment of one kelvin, that is the same unit as J/°C. The heat capacity of an object is an amount of energy divided by a temperature change, which has the dimension L 2 ⋅M⋅T −2 ...