Search results
Results from the WOW.Com Content Network
General relativity introduces a third force that attracts the particle slightly more strongly than Newtonian gravity, especially at small radii. This third force causes the particle's elliptical orbit to precess (cyan orbit) in the direction of its rotation; this effect has been measured in Mercury, Venus and Earth.
J1407b is a substellar object, either a free-floating planet or brown dwarf, with a large circumplanetary disk or ring system. It was first detected by automated telescopes in 2007 when its disk eclipsed the star V1400 Centauri, causing a series of dimming events for 56 days. The eclipse by J1407b was not discovered until 2010, by Mark Pecaut ...
A passive ring interferometer uses light entering the setup from outside. The interference pattern that is obtained is a fringe pattern, and what is measured is a phase shift. It is also possible to construct a ring interferometer that is self-contained, based on a completely different arrangement.
Deflection of light (sent out from the location shown in blue) near a compact body (shown in gray) General relativity predicts that the path of light will follow the curvature of spacetime as it passes near a massive object. This effect was initially confirmed by observing the light of stars or distant quasars being deflected as it passes the Sun.
Newton defined the force acting on a planet to be the product of its mass and the acceleration (see Newton's laws of motion). So: Every planet is attracted towards the Sun. The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.
Albert Einstein predicted in 1936 that rays of light from the same direction that skirt the edges of the Sun would converge to a focal point approximately 542 AU from the Sun. [37] Thus, a probe positioned at this distance (or greater) from the Sun could use the Sun as a gravitational lens for magnifying distant objects on the opposite side of ...
Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.
Because all of the mass is located at the same angle with respect to the x-axis, and the distance between the points on the ring is the same distance as before, the gravitational field in the x-direction at point due to the ring is the same as a point mass located at a point units above the y-axis: = (+) /