Search results
Results from the WOW.Com Content Network
Usually the density decreases due to an increase in temperature and causes the fluid to rise. This motion is caused by the buoyancy force. The major force that resists the motion is the viscous force. The Grashof number is a way to quantify the opposing forces. [3] The Grashof number is:
Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...
The rate of heat flow is the amount of heat that is transferred per unit of time in some material, usually measured in watts (joules per second). Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot ...
Thus, there is a straightforward way of translating between solutions of the heat equation with a general value of α and solutions of the heat equation with α = 1. As such, for the sake of mathematical analysis, it is often sufficient to only consider the case α = 1 .
Convection (or convective heat transfer) is the transfer of heat from one place to another due to the movement of fluid. Although often discussed as a distinct method of heat transfer, convective heat transfer involves the combined processes of conduction (heat diffusion) and advection (heat transfer by bulk fluid flow ).
Chemical reactions involving thermal runaway are also called thermal explosions in chemical engineering, or runaway reactions in organic chemistry.It is a process by which an exothermic reaction goes out of control: the reaction rate increases due to an increase in temperature, causing a further increase in temperature and hence a further rapid increase in the reaction rate.