enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limiting reagent - Wikipedia

    en.wikipedia.org/wiki/Limiting_reagent

    One reactant (A) is chosen, and the balanced chemical equation is used to determine the amount of the other reactant (B) necessary to react with A. If the amount of B actually present exceeds the amount required, then B is in excess and A is the limiting reagent. If the amount of B present is less than required, then B is the limiting reagent.

  3. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    The limiting reagent is the reagent that limits the amount of product that can be formed and is completely consumed when the reaction is complete. An excess reactant is a reactant that is left over once the reaction has stopped due to the limiting reactant being exhausted.

  4. Enantiomeric excess - Wikipedia

    en.wikipedia.org/wiki/Enantiomeric_excess

    In stereochemistry, enantiomeric excess (ee) is a measurement of purity used for chiral substances. It reflects the degree to which a sample contains one enantiomer in greater amounts than the other. A racemic mixture has an ee of 0%, while a single completely pure enantiomer has an ee of 100%. A sample with 70% of one enantiomer and 30% of the ...

  5. Yield (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Yield_(chemistry)

    Stoichiometric equations are used to determine the limiting reagent or reactant—the reactant that is completely consumed in a reaction. The limiting reagent determines the theoretical yield—the relative quantity of moles of reactants and the product formed in a chemical reaction. Other reactants are said to be present in excess.

  6. Conversion (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Conversion_(chemistry)

    Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...

  7. Reaction progress kinetic analysis - Wikipedia

    en.wikipedia.org/wiki/Reaction_progress_kinetic...

    Here, a same-excess (e = 0.60 M) of [ArX] relative to [HNR 2] and [MOR] is utilized for each of the curves. As described above, same-excess experiments are conducted with two or more experiments holding the excess, (e) constant while changing the absolute concentrations of the substrates (in this case, the catalyst is also treated as a substrate.)

  8. Extent of reaction - Wikipedia

    en.wikipedia.org/wiki/Extent_of_reaction

    This formula leads to the Nernst equation when applied to the oxidation-reduction reaction which generates the voltage of a voltaic cell. Analogously, the relation between the change in reaction enthalpy and enthalpy can be defined. For example, [8] = (),

  9. Karl Fischer titration - Wikipedia

    en.wikipedia.org/wiki/Karl_Fischer_titration

    This elementary reaction consumes exactly one molar equivalent of water vs. iodine. Iodine is added to the solution until it is present in excess, marking the end point of the titration, which can be detected by potentiometry. The reaction is run in an alcohol solution containing a base, which consumes the sulfur trioxide and hydroiodic acid ...