Search results
Results from the WOW.Com Content Network
The q-line (depicted in blue in Figure 1) intersects the point of intersection of the feed composition line and the x = y line and has a slope of q / (q - 1), where the parameter q denotes mole fraction of liquid in the feed. For example, if the feed is a saturated liquid, q = 1 and the slope of the q-line is infinite (drawn as a vertical line ...
Mole fraction is numerically identical to the number fraction, which is defined as the number of particles of a constituent N i divided by the total number of all molecules N tot. Whereas mole fraction is a ratio of amounts to amounts (in units of moles per moles), molar concentration is a quotient of amount to volume (in units of moles per litre).
The volume fraction is analogous to the mole fraction, but is weighted to take account of the relative sizes of the molecules. For a small solute, the mole fractions would appear instead, and this modification is the innovation due to Flory and Huggins.
Raoult's law (/ ˈ r ɑː uː l z / law) is a relation of physical chemistry, with implications in thermodynamics.Proposed by French chemist François-Marie Raoult in 1887, [1] [2] it states that the partial pressure of each component of an ideal mixture of liquids is equal to the vapor pressure of the pure component (liquid or solid) multiplied by its mole fraction in the mixture.
In chemistry, the lever rule is a formula used to determine the mole fraction (x i) or the mass fraction (w i) of each phase of a binary equilibrium phase diagram.It can be used to determine the fraction of liquid and solid phases for a given binary composition and temperature that is between the liquidus and solidus line.
An observable that is proportional to complex formation (such as absorption signal or enzymatic activity) is plotted against the mole fractions of these two components. χ A is the mole fraction of compound A and P is the physical property being measured to understand complex formation. This property is most oftentimes UV absorbance.
where is a factor of converting the 3D diffusive adsorption problem into a 1D diffusion problem whose value depends on the system, e.g., a fraction of adsorption area over solute nearest neighbor sphere surface area / assuming cubic packing each unit has 8 neighbors shared with other units. This example fraction converges the result to the 3D ...
It is often useful to alter the copolymer equation by expressing concentrations in terms of mole fractions. Mole fractions of monomers and in the feed are defined as and where = = (+) Similarly, represents the mole fraction of each monomer in the copolymer: