Search results
Results from the WOW.Com Content Network
In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.
If x is a primitive kth root of unity and also a (not necessarily primitive) βth root of unity, then k is a divisor of β. This is true, because Bézout's identity yields an integer linear combination of k and β equal to gcd ( k , β ) {\displaystyle \gcd(k,\ell )} .
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo p n (that is, the group of units of the ring Z/p n Z) is cyclic. [ 1 ] The number of elements of a finite field is always a prime power and conversely, every prime power occurs as the number of elements in some finite ...
An nth root of unity is a complex number whose nth power is 1, a root of the polynomial x n − 1. The set of all nth roots of unity forms a cyclic group of order n under multiplication. [1] The generators of this cyclic group are the nth primitive roots of unity; they are the roots of the nth cyclotomic polynomial.
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n. This means that the group U(n) is cyclic and the residue class of a generates it. The order of a (mod n) also divides λ(n), a value of the Carmichael function, which is an even stronger statement than the divisibility ...