enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Artin's conjecture on primitive roots - Wikipedia

    en.wikipedia.org/wiki/Artin's_conjecture_on...

    In number theory, Artin's conjecture on primitive roots states that a given integer a that is neither a square number nor −1 is a primitive root modulo infinitely many primes p. The conjecture also ascribes an asymptotic density to these primes. This conjectural density equals Artin's constant or a rational multiple thereof.

  3. Root of unity modulo n - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity_modulo_n

    If x is a primitive kth root of unity and also a (not necessarily primitive) β„“th root of unity, then k is a divisor of β„“. This is true, because Bézout's identity yields an integer linear combination of k and β„“ equal to gcd ( k , β„“ ) {\displaystyle \gcd(k,\ell )} .

  4. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...

  5. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.

  6. Prime power - Wikipedia

    en.wikipedia.org/wiki/Prime_power

    Every prime power (except powers of 2 greater than 4) has a primitive root; thus the multiplicative group of integers modulo p n (that is, the group of units of the ring Z/p n Z) is cyclic. [ 1 ] The number of elements of a finite field is always a prime power and conversely, every prime power occurs as the number of elements in some finite ...

  7. Cyclic group - Wikipedia

    en.wikipedia.org/wiki/Cyclic_group

    An nth root of unity is a complex number whose nth power is 1, a root of the polynomial x n − 1. The set of all nth roots of unity forms a cyclic group of order n under multiplication. [1] The generators of this cyclic group are the nth primitive roots of unity; they are the roots of the nth cyclotomic polynomial.

  8. Primitive root - Wikipedia

    en.wikipedia.org/wiki/Primitive_root

    In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...

  9. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    If the order of a is actually equal to φ(n), and therefore as large as possible, then a is called a primitive root modulo n. This means that the group U(n) is cyclic and the residue class of a generates it. The order of a (mod n) also divides λ(n), a value of the Carmichael function, which is an even stronger statement than the divisibility ...