Search results
Results from the WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
In geometry, the midpoint theorem describes a property of parallel chords in a conic. It states that the midpoints of parallel chords in a conic are located on a common line. The common line or line segment for the midpoints is called the diameter. For a circle, ellipse or hyperbola the diameter goes through its center.
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.
Media in category "Conic sections" This category contains only the following file. Drawing an ellipse via two tacks a loop and a pen 2.jpg 480 × 640; 24 KB
Consisting of 32 propositions, the work explores properties of and theorems related to the solids generated by revolution of conic sections about their axes, including paraboloids, hyperboloids, and spheroids. [1] The principal result of the work is comparing the volume of any segment cut off by a plane with the volume of a cone with equal base ...
A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.
A pencil of confocal ellipses and hyperbolas is specified by choice of linear eccentricity c (the x-coordinate of one focus) and can be parametrized by the semi-major axis a (the x-coordinate of the intersection of a specific conic in the pencil and the x-axis). When 0 < a < c the conic is a hyperbola; when c < a the conic is an ellipse.
The first theorem is that a closed conic section (i.e. an ellipse) is the locus of points such that the sum of the distances to two fixed points (the foci) is constant. The second theorem is that for any conic section, the distance from a fixed point (the focus) is proportional to the distance from a fixed line (the directrix ), the constant of ...