enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.

  3. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.

  4. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    NumPy, a BSD-licensed library that adds support for the manipulation of large, multi-dimensional arrays and matrices; it also includes a large collection of high-level mathematical functions. NumPy serves as the backbone for a number of other numerical libraries, notably SciPy. De facto standard for matrix/tensor operations in Python.

  5. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  6. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    uBLAS is a C++ template class library that provides BLAS level 1, 2, 3 functionality for dense, packed and sparse matrices. Dlib: Davis E. King C++ 2006 19.24.2 / 05.2023 Free Boost C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît ...

  7. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    Performing an in-place transpose (in-situ transpose) is most difficult when N ≠ M, i.e. for a non-square (rectangular) matrix, where it involves a complex permutation of the data elements, with many cycles of length greater than 2. In contrast, for a square matrix (N = M), all of the cycles are of length 1 or 2, and the transpose can be ...

  8. Kabsch algorithm - Wikipedia

    en.wikipedia.org/wiki/Kabsch_algorithm

    Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:

  9. Minimum bounding box algorithms - Wikipedia

    en.wikipedia.org/wiki/Minimum_bounding_box...

    It is possible to enumerate boxes of this kind in linear time with the approach called rotating calipers by Godfried Toussaint in 1983. [2] The same approach is applicable for finding the minimum-perimeter enclosing rectangle. [2] A C++ implementation of the algorithm that is robust against floating point errors is available. [3]