Search results
Results from the WOW.Com Content Network
Thermal diffusivity is a contrasting measure to thermal effusivity. [6] [7] In a substance with high thermal diffusivity, heat moves rapidly through it because the substance conducts heat quickly relative to its volumetric heat capacity or 'thermal bulk'. Thermal diffusivity is often measured with the flash method.
The higher the thermal diffusivity of the sample, the faster the energy reaches the backside. A laser flash apparatus (LFA) to measure thermal diffusivity over a broad temperature range, is shown on the right hand side. In a one-dimensional, adiabatic case the thermal diffusivity is calculated from this temperature rise as follows:
Here, Λ is the thermal conductivity of the solid, D is the thermal diffusivity of the solid, and r is the radial coordinate. In a typical time-domain thermoreflectance experiment, the co-aligned laser beams have cylindrical symmetry, therefore the Hankel transform can be used to simplify the computation of the convolution of the equation with ...
1781 - Joseph Priestley attempts to measure the ability of different gases to conduct heat using the heated wire experiment. 1931 - Sven Pyk and Bertil Stalhane proposed the first “transient” hot wire method for the measurement of thermal conductivity of solids and powders. Unlike previous methods, the one devised by Pyk and Stalhane used ...
D is the mass diffusivity (m 2 /s). μ is the dynamic viscosity of the fluid (Pa·s = N·s/m 2 = kg/m·s) ρ is the density of the fluid (kg/m 3) Pe is the Peclet Number; Re is the Reynolds Number. The heat transfer analog of the Schmidt number is the Prandtl number (Pr). The ratio of thermal diffusivity to mass diffusivity is the Lewis number ...
Knowing the diffusion coefficients is necessary for predicting the flux of atoms between the two materials, which can then be used in numerical models of the diffusion bonding process, as, for example, was looked at in the paper by Orhan, Aksoy, and Eroglu when creating a model to determine the amount of time required to create a diffusion bond ...
Heat capacity, c p: 89.7248 J/(mol K) Liquid properties Std enthalpy change of formation, Δ f H o liquid-1620.57 kJ/mol Standard molar entropy, S o liquid: 67.24 J/(mol K) Heat capacity, c p: 192.5 J/(mol K) Gas properties Std enthalpy change of formation, Δ f H o gas? kJ/mol Standard molar entropy, S o gas? J/(mol K) Heat capacity, c p? J ...
Polymers represent another large area in which thermal analysis finds strong applications. Thermoplastic polymers are commonly found in everyday packaging and household items, but for the analysis of the raw materials, effects of the many additive used (including stabilisers and colours) and fine-tuning of the moulding or extrusion processing used can be achieved by using differential scanning ...