Ad
related to: phage display basics youtube channel lineup- Microbiology
Enzyme Substrates
chromogenic, fluorogenic indicators
- Careers
View our Current Vacancies
Worldwide Locations
- Life Science
Culture Media Additives
Biochemicals
- About Biosynth
Critical Raw Materials and Services
Chemicals, Peptides and Biologics
- Microbiology
Search results
Results from the WOW.Com Content Network
Like the two-hybrid system, phage display is used for the high-throughput screening of protein interactions.In the case of M13 filamentous phage display, the DNA encoding the protein or peptide of interest is ligated into the pIII or pVIII gene, encoding either the minor or major coat protein, respectively.
Assembled major coat protein, exploded view. The virion is a flexible filament (worm-like chain) about 6 nm in diameter and 900 nm long.Several thousand copies of a small (50 amino-acid residues) elongated alpha-helical major coat protein subunit (the product of gene 8, or p8) in an overlapping shingle-like array form a hollow cylinder enclosing the circular single-stranded DNA genome.
mRNA display is a display technique used for in vitro protein, and/or peptide evolution to create molecules that can bind to a desired target. The process results in translated peptides or proteins that are associated with their mRNA progenitor via a puromycin linkage.
The structures of the phage capsid and of some other phage proteins are available from the Protein Data Bank. [6] The single-stranded Ff phage DNA runs down the central core of the phage, and is protected by a cylindrical protein coat built from thousands of identical α-helical major coat protein subunits coded by phage gene 8.
The 'helper' phage infects the bacterial host by first attaching to the host cell's pilus and then, after attachment, transporting the phage genome into the cytoplasm of the host cell. Inside the cell, the phage genome triggers production of single stranded phagemid DNA in the cytoplasm. This phagemid DNA is then packaged into phage particles.
The first step is to have phage display libraries prepared. This involves inserting foreign desired gene segments into a region of the bacteriophage genome, so that the peptide product will be displayed on the surface of the bacteriophage virion. The most often used are genes pIII or pVIII of bacteriophage M13. [5]
Bacterial display (or bacteria display or bacterial surface display) is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection procedures (biopanning).
The article does seem to focus on filamentous phage display and accentuates the need for helper phage. This ignores methods based not on phagemids but on engineered M13 phage - the approach taken at the outset by Smith. Phil Scrutinator 17:44, 14 March 2008 (UTC) T7 phage display should be mentioned also.
Ad
related to: phage display basics youtube channel lineup