Search results
Results from the WOW.Com Content Network
In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is a Fourier multiplier operator [1] that encodes a great deal of information about the process.
The function f defined as f(x) = 2 – x if 0 ≤ x < 1 and f(1) = 0 is an additive generator of the drastic t-norm. Basic properties of additive generators are summarized by the following theorem: Let f: [0, 1] → [0, +∞] be an additive generator of a t-norm T. Then: T is an Archimedean t-norm. T is continuous if and only if f is continuous.
7.2 Sum of reciprocal ... 9 Notes. 10 References. Toggle the table of contents. List of mathematical series ... allowing the result to be computed in constant time ...
The formula for an integration by parts is () ′ = [() ()] ′ (). Beside the boundary conditions , we notice that the first integral contains two multiplied functions, one which is integrated in the final integral ( g ′ {\displaystyle g'} becomes g {\displaystyle g} ) and one which is differentiated ( f {\displaystyle f} becomes f ...
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If n is a power of an odd prime number the formula for the totient says its totient can be a power of two only if n is a first power and n − 1 is a power of 2. The primes that are one more than a power of 2 are called Fermat primes , and only five are known: 3, 5, 17, 257, and 65537.
Abel's summation formula can be generalized to the case where is only assumed to be continuous if the integral is interpreted as a Riemann–Stieltjes integral: ∑ x < n ≤ y a n ϕ ( n ) = A ( y ) ϕ ( y ) − A ( x ) ϕ ( x ) − ∫ x y A ( u ) d ϕ ( u ) . {\displaystyle \sum _{x<n\leq y}a_{n}\phi (n)=A(y)\phi (y)-A(x)\phi (x)-\int _{x ...