enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Center (group theory) - Wikipedia

    en.wikipedia.org/wiki/Center_(group_theory)

    The center of the symmetric group, S n, is trivial for n ≥ 3. The center of the alternating group, A n, is trivial for n ≥ 4. The center of the general linear group over a field F, GL n (F), is the collection of scalar matrices, { sI n ∣ s ∈ F \ {0} }. The center of the orthogonal group, O n (F) is {I n, −I n}.

  3. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object

  4. Center vortex - Wikipedia

    en.wikipedia.org/wiki/Center_vortex

    Center vortices carry a gauge charge under the center elements of the universal cover of the gauge group G. Equivalently, their topological charge is an element of the fundamental group of this universal cover quotiented by its center. On a 2-dimensional space M a center vortex at a point x may be constructed as follows.

  5. Fixed points of isometry groups in Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Fixed_points_of_isometry...

    Space Only the trivial isometry group C 1 leaves the whole space fixed. Plane C s with respect to a plane leaves that plane fixed. Line Isometry groups leaving a line fixed are isometries which in every plane perpendicular to that line have common 2D point groups in two dimensions with respect to the point of intersection of the line and the planes.

  6. Symmetric group - Wikipedia

    en.wikipedia.org/wiki/Symmetric_group

    The symmetric groups on the empty set and the singleton set are trivial, which corresponds to 0! = 1! = 1. In this case the alternating group agrees with the symmetric group, rather than being an index 2 subgroup, and the sign map is trivial. In the case of S 0, its only member is the empty function. S 2

  7. Simple Lie group - Wikipedia

    en.wikipedia.org/wiki/Simple_Lie_group

    Once these are known, the ones with non-trivial center are easy to list as follows. Any simple Lie group with trivial center has a universal cover whose center is the fundamental group of the simple Lie group. The corresponding simple Lie groups with non-trivial center can be obtained as quotients of this universal cover by a subgroup of the ...

  8. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    A regular tetrahedron is invariant under twelve distinct rotations (if the identity transformation is included as a trivial rotation and reflections are excluded). These are illustrated here in the cycle graph format, along with the 180° edge (blue arrows) and 120° vertex (pink and orange arrows) rotations that permute the tetrahedron through the positions.

  9. Centre (geometry) - Wikipedia

    en.wikipedia.org/wiki/Centre_(geometry)

    A symmetry of the projective plane with a given conic relates every point or pole to a line called its polar. The concept of centre in projective geometry uses this relation. The following assertions are from G. B. Halsted. [3] The harmonic conjugate of a point at infinity with respect to the end points of a finite sect is the 'centre' of that ...