enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    [5]: 174 The Dirac delta is used to model a tall narrow spike function (an impulse), and other similar abstractions such as a point charge, point mass or electron point. For example, to calculate the dynamics of a billiard ball being struck, one can approximate the force of the impact by a Dirac delta.

  3. Delta modulation - Wikipedia

    en.wikipedia.org/wiki/Delta_modulation

    To achieve high signal-to-noise ratio, delta modulation must use oversampling techniques, that is, the analog signal is sampled at a rate several times higher than the Nyquist rate. Derived forms of delta modulation are continuously variable slope delta modulation, delta-sigma modulation, and differential modulation.

  4. Delta ray - Wikipedia

    en.wikipedia.org/wiki/Delta_ray

    A delta ray is a secondary electron with enough energy to escape a significant distance away from the primary radiation beam and produce further ionization. [ 1 ] : 25 The term is sometimes used to describe any recoil particle caused by secondary ionization .

  5. Delta potential - Wikipedia

    en.wikipedia.org/wiki/Delta_potential

    The delta potential is the potential = (), where δ(x) is the Dirac delta function. It is called a delta potential well if λ is negative, and a delta potential barrier if λ is positive. The delta has been defined to occur at the origin for simplicity; a shift in the delta function's argument does not change any of the following results.

  6. Communication physics - Wikipedia

    en.wikipedia.org/wiki/Communication_physics

    Communication physics aims to study and explain how a communication system works. This can be applied in a hard science way via Computer Communication or in the way of how people communicate. [1] An example of communication physics is how computers can transmit and receive data through networks.

  7. Dirac equation - Wikipedia

    en.wikipedia.org/wiki/Dirac_equation

    In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry.

  8. Quantum electrodynamics - Wikipedia

    en.wikipedia.org/wiki/Quantum_electrodynamics

    In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. [1] [2] [3] In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. [2]

  9. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    The top electron has twice the momentum, while the bottom electron has half. Note that as the momentum increases, the phase velocity decreases down to c , whereas the group velocity increases up to c , until the wave packet and its phase maxima move together near the speed of light, whereas the wavelength continues to decrease without bound.