Search results
Results from the WOW.Com Content Network
Isoprenol, also known as 3-methylbut-3-en-1-ol, is a hemiterpene alcohol. It is produced industrially as an intermediate to 3-methylbut-2-en-1-ol (prenol): global production in 2001 can be estimated as 6–13 thousand tons.
Prenol, or 3-methyl-2-buten-1-ol, is a natural alcohol. It is one of the most simple terpenoids . It is a clear colorless oil that is reasonably soluble in water and miscible with most common organic solvents.
tert-Amyl alcohol (TAA) or 2-methylbutan-2-ol (2M2B), is a branched pentanol. Historically, TAA has been used as an anesthetic [ 3 ] and more recently as a recreational drug . [ 4 ] TAA is mostly a positive allosteric modulator for GABA A receptors in the same way as ethanol . [ 5 ]
In the similar substitution of 1-chloro-3-methyl-2-butene, the secondary 2-methyl-3-buten-2-ol is produced in a yield of 85%, while that for the primary 3-methyl-2-buten-1-ol is 15%. Allylic shifts occur because the transition state is an allyl intermediate. In other respects they are similar to classical nucleophilic substitution, and admit ...
Three of these alcohols, 2-methyl-1-butanol, 2-pentanol, and 3-methyl-2-butanol (methyl isopropyl carbinol), contain stereocenters, and are therefore chiral and optically active. The most important amyl alcohol is isoamyl alcohol , the chief one generated by fermentation in the production of alcoholic beverages and a constituent of fusel oil .
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
2-Methyl-1-butanol (IUPAC name, also called active amyl alcohol) is an organic compound with the formula CH 3 CH 2 CH(CH 3)CH 2 OH. It is one of several isomers of amyl alcohol.This colorless liquid occurs naturally in trace amounts and has attracted some attention as a potential biofuel, exploiting its hydrophobic (gasoline-like) and branched structure.
For example, the relative rates of epoxidation increase upon methyl substitution of the alkene (the methyl groups increase the electron density of the double bond by hyperconjugation): ethylene (1, no methyl groups), propene (24, one methyl group), cis-2-butene (500, two methyl groups), 2-methyl-2-butene (6500, three methyl groups), 2,3 ...