Search results
Results from the WOW.Com Content Network
Huygens principle of double refraction, named after Dutch physicist Christiaan Huygens, explains the phenomenon of double refraction observed in uniaxial anisotropic material such as calcite. When unpolarized light propagates in such materials (along a direction different from the optical axis ), it splits into two different rays, known as ...
The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating from different points mutually interfere. [1] The sum of these spherical wavelets forms a new wavefront.
The principle yields an equivalent problem for a radiation problem by introducing an imaginary closed surface and fictitious surface current densities. It is an extension of Huygens–Fresnel principle, which describes each point on a wavefront as a spherical wave source.
Christiaan Huygens' construction. In his 1678 Traité de la Lumière, Christiaan Huygens showed how Snell's law of sines could be explained by, or derived from, the wave nature of light, using what we have come to call the Huygens–Fresnel principle.
The Huygens–Fresnel principle is one such model; it states that each point on a wavefront generates a secondary wavelet, and that the disturbance at any subsequent point can be found by summing the contributions of the individual wavelets at that point.
This speed change causes the light to be refracted and to enter the new medium at a different angle (Huygens principle). The degree of bending of the light's path depends on the angle that the incident beam of light makes with the surface, and on the ratio between the refractive indices of the two media (Snell's law).
The different angles of refraction for the two polarization components are shown in the figure at the top of this page, with the optic axis along the surface (and perpendicular to the plane of incidence), so that the angle of refraction is different for the p polarization (the "ordinary ray" in this case, having its electric vector ...
Examples of the application of Huygens–Fresnel principle can be found in the articles on diffraction and Fraunhofer diffraction. More rigorous models, involving the modelling of both electric and magnetic fields of the light wave, are required when dealing with materials whose electric and magnetic properties affect the interaction of light ...