enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pure tone - Wikipedia

    en.wikipedia.org/wiki/Pure_tone

    A pure tone's pressure waveform versus time looks like this; its frequency determines the x axis scale; its amplitude determines the y axis scale; and its phase determines the x origin. In psychoacoustics , a pure tone is a sound with a sinusoidal waveform ; that is, a sine wave of constant frequency , phase-shift , and amplitude . [ 1 ]

  3. Musical note - Wikipedia

    en.wikipedia.org/wiki/Musical_note

    Logarithmic plot of frequency in hertz versus pitch of a chromatic scale starting on middle C. Each subsequent note has a pitch equal to the frequency of the prior note's pitch multiplied by 12 √ 2. The base-2 logarithm of the above frequency–pitch relation conveniently results in a linear relationship with or :

  4. Piano key frequencies - Wikipedia

    en.wikipedia.org/wiki/Piano_key_frequencies

    A jump from the lowest semitone to the highest semitone in one octave doubles the frequency (for example, the fifth A is 440 Hz and the sixth A is 880 Hz). The frequency of a pitch is derived by multiplying (ascending) or dividing (descending) the frequency of the previous pitch by the twelfth root of two (approximately 1.059463).

  5. Mel scale - Wikipedia

    en.wikipedia.org/wiki/Mel_scale

    Some non-mel auditory-frequency-scale formulas use the same form but with much lower break frequency, not necessarily mapping to 1000 at 1000 Hz; for example the ERB-rate scale of Glasberg and Moore (1990) uses a break point of 228.8 Hz, [15] and the cochlear frequency–place map of Greenwood (1990) uses 165.3 Hz.

  6. Octave - Wikipedia

    en.wikipedia.org/wiki/Octave

    An octave is the interval between one musical pitch and another with double or half its frequency. For example, if one note has a frequency of 440 Hz, the note one octave above is at 880 Hz, and the note one octave below is at 220 Hz. The ratio of frequencies of two notes an octave apart is therefore 2:1.

  7. Pitch space - Wikipedia

    en.wikipedia.org/wiki/Pitch_space

    The simplest pitch space model is the real line. A fundamental frequency f is mapped to a real number p according to the equation = + ⁡ (/) This creates a linear space in which octaves have size 12, semitones (the distance between adjacent keys on the piano keyboard) have size 1, and middle C is assigned the number 60, as it is in MIDI. 440 Hz is the standard frequency of 'concert A', which ...

  8. Pitch (music) - Wikipedia

    en.wikipedia.org/wiki/Pitch_(music)

    Pitch is a major auditory attribute of musical tones, along with duration, loudness, and timbre. [3] Pitch may be quantified as a frequency, but pitch is not a purely objective physical property; it is a subjective psychoacoustical attribute of sound. Historically, the study of pitch and pitch perception has been a central problem in ...

  9. Tuning fork - Wikipedia

    en.wikipedia.org/wiki/Tuning_fork

    The frequency decreases (becomes flat) with increasing temperature. [6] Tuning forks are manufactured to have their correct pitch at a standard temperature. The standard temperature is now 20 °C (68 °F), but 15 °C (59 °F) is an older standard. The pitch of other instruments is also subject to variation with temperature change.