enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal.

  3. Chemical graph generator - Wikipedia

    en.wikipedia.org/wiki/Chemical_graph_generator

    A chemical graph generator is a software package to generate computer representations of chemical ... the MASS algorithm worked as an adjacency matrix generator.

  4. Watts–Strogatz model - Wikipedia

    en.wikipedia.org/wiki/Watts–Strogatz_model

    Watts–Strogatz small-world model generated by igraph and visualized by Cytoscape 2.5. 100 nodes. The Watts–Strogatz model is a random graph generation model that produces graphs with small-world properties, including short average path lengths and high clustering.

  5. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The Laplacian matrix is the easiest to define for a simple graph, but more common in applications for an edge-weighted graph, i.e., with weights on its edges — the entries of the graph adjacency matrix. Spectral graph theory relates properties of a graph to a spectrum, i.e., eigenvalues, and eigenvectors of matrices associated with the graph ...

  6. Complete bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Complete_bipartite_graph

    The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...

  7. Seidel adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Seidel_adjacency_matrix

    In mathematics, in graph theory, the Seidel adjacency matrix of a simple undirected graph G is a symmetric matrix with a row and column for each vertex, having 0 on the diagonal, −1 for positions whose rows and columns correspond to adjacent vertices, and +1 for positions corresponding to non-adjacent vertices.

  8. Strongly regular graph - Wikipedia

    en.wikipedia.org/wiki/Strongly_regular_graph

    Let I denote the identity matrix and let J denote the matrix of ones, both matrices of order v. The adjacency matrix A of a strongly regular graph satisfies two equations. First: = =, which is a restatement of the regularity requirement. This shows that k is an eigenvalue of the adjacency matrix with the all-ones eigenvector.

  9. Cuthill–McKee algorithm - Wikipedia

    en.wikipedia.org/wiki/Cuthill–McKee_algorithm

    Given a symmetric matrix we visualize the matrix as the adjacency matrix of a graph. The Cuthill–McKee algorithm is then a relabeling of the vertices of the graph to reduce the bandwidth of the adjacency matrix. The algorithm produces an ordered n-tuple of vertices which is the new order of the vertices.