Search results
Results from the WOW.Com Content Network
In object-oriented languages, string functions are often implemented as properties and methods of string objects. In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions.
For example, reverse :: List a -> List a, which reverses a list, is a natural transformation, as is flattenInorder :: Tree a -> List a, which flattens a tree from left to right, and even sortBy :: (a -> a -> Bool) -> List a -> List a, which sorts a list based on a provided comparison function.
Folds can be regarded as consistently replacing the structural components of a data structure with functions and values. Lists, for example, are built up in many functional languages from two primitives: any list is either an empty list, commonly called nil ([]), or is constructed by prefixing an element in front of another list, creating what is called a cons node ( Cons(X1,Cons(X2,Cons ...
The reverse of a string is a string with the same symbols but in reverse order. For example, if s = abc (where a, b, and c are symbols of the alphabet), then the reverse of s is cba. A string that is the reverse of itself (e.g., s = madam) is called a palindrome, which also includes the empty string and all strings of length 1.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
Docstrings (documentation strings), that is, strings that are located alone without assignment as the first indented line within a module, class, method or function, automatically set their contents as an attribute named __doc__, which is intended to store a human-readable description of the object's purpose, behavior, and usage.
In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation. It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [ 1 ]
The compiler uses argument-dependent lookup to resolve the begin and end functions. [9] The C++ Standard Library also supports for_each, [10] that applies each element to a function, which can be any predefined function or a lambda expression. While range-based for is only from the start to the end, the range or direction can be changed by ...