Ad
related to: what does a derivative do to a graph equation in one
Search results
Results from the WOW.Com Content Network
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
Graph of the linear function: () = + In calculus and related areas of mathematics, a linear function from the real numbers to the real numbers is a function whose graph (in Cartesian coordinates) is a non-vertical line in the plane. [1]
A partial differential equation is a differential equation that relates functions of more than one variable to their partial derivatives. Differential equations arise naturally in the physical sciences, in mathematical modelling, and within mathematics itself.
A differentiable function. In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain.In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its domain.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Differential equations or difference equations on such graphs can be employed to leverage the graph's structure for tasks such as image segmentation (where the vertices represent pixels and the weighted edges encode pixel similarity based on comparisons of Moore neighborhoods or larger windows), data clustering, data classification, or ...
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number.Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.
If one considers the upper half circle as the graph of the function () =, then x = 0 is a critical point with critical value 1 due to the derivative being equal to 0, and x = ±1 are critical points with critical value 0 due to the derivative being undefined.
Ad
related to: what does a derivative do to a graph equation in one