enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    Every two ideal polyhedra with the same number of vertices have the same surface area, and it is possible to calculate the volume of an ideal polyhedron using the Lobachevsky function. The surface of an ideal polyhedron forms a hyperbolic manifold , topologically equivalent to a punctured sphere, and every such manifold forms the surface of a ...

  3. Reeve tetrahedra - Wikipedia

    en.wikipedia.org/wiki/Reeve_tetrahedra

    In two dimensions, the area of every polyhedron with lattice vertices is determined as a formula of the number of lattice points at its vertices, on its boundary, and in its interior, according to Pick's theorem. The Reeve tetrahedra imply that there can be no corresponding formula for the volume in three or more dimensions.

  4. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    This polyhedron is topologically related as a part of a sequence of cantellated polyhedra with vertex figure (3.4.n.4), which continues as tilings of the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry .

  5. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [2] is known as Euler's polyhedron formula. [3] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.

  6. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  7. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again. Some polyhedra are self-dual, meaning that the dual of the polyhedron is congruent to the original polyhedron. [35] Abstract polyhedra also have duals, obtained by reversing the partial order defining the polyhedron to obtain its dual or opposite order ...

  8. N-dimensional polyhedron - Wikipedia

    en.wikipedia.org/wiki/N-dimensional_polyhedron

    Many traditional polyhedral forms are n-dimensional polyhedra. Other examples include: A half-space is a polyhedron defined by a single linear inequality, a 1 T x ≤ b 1. A hyperplane is a polyhedron defined by two inequalities, a 1 T x ≤ b 1 and a 1 T x ≥ b 1 (which is equivalent to -a 1 T x ≤ -b 1). A quadrant in the plane.

  9. Dehn invariant - Wikipedia

    en.wikipedia.org/wiki/Dehn_invariant

    Flexible polyhedra are a class of polyhedra that can undergo a continuous motion that preserves the shape of their faces. By Cauchy's rigidity theorem, they must be non-convex, and it is known (the "bellows theorem") that the volume of the polyhedron must stay constant throughout this motion. A stronger version of this theorem states that the ...