Search results
Results from the WOW.Com Content Network
Nth degree, or nth degree, are two words expressing a number to a certain level. In the first word, 'Nth' or 'nth', is a word expressing a number, in two parts, 'n' and 'th', but where that number is not known, (hence the use of 'n') and a correlatory factoring, 'th', (exponential amplification, usually from four onwards (fourth, fifth)), is used to multiply the 'n' (number), to arrive at a ...
In mathematics, the degree of a polynomial is the highest of the degrees of the polynomial's monomials (individual terms) with non-zero coefficients. The degree of a term is the sum of the exponents of the variables that appear in it, and thus is a non-negative integer .
The integer n is called the index or degree, and the number x of which the root is taken is the radicand. A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction.
In mathematics, the order of a polynomial may refer to: the degree of a polynomial, that is, the largest exponent (for a univariate polynomial) or the largest sum of exponents (for a multivariate polynomial) in any of its monomials; the multiplicative order, that is, the number of times the polynomial is divisible by some value;
The n th roots of unity are, by definition, the roots of the polynomial x n − 1, and are thus algebraic numbers. As this polynomial is not irreducible (except for n = 1), the primitive n th roots of unity are roots of an irreducible polynomial (over the integers) of lower degree, called the n th cyclotomic polynomial, and often denoted Φ n.
In statistics, polynomial regression is a form of regression analysis in which the relationship between the independent variable x and the dependent variable y is modeled as an nth degree polynomial in x. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted E(y |x).
In the case of a smooth function, the nth-order approximation is a polynomial of degree n, which is obtained by truncating the Taylor series to this degree. The formal usage of order of approximation corresponds to the omission of some terms of the series used in the expansion.
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.