Search results
Results from the WOW.Com Content Network
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1] Generally, if the function is any trigonometric function, and is its derivative,
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.
Nevertheless, it can be shown that this theorem holds even if or is not differentiable: [3] [4] it suffices, for example, to use the Stieltjes integral in the previous argument. On the other hand, even though general monotonic functions are differentiable almost everywhere, the proof of the general formula does not follow, unless f − 1 ...
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.
Since sinc is an even entire function (holomorphic over the entire complex plane), Si is entire, odd, and the integral in its definition can be taken along any path connecting the endpoints. By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞.
3.1 Integrals of hyperbolic tangent, cotangent, secant, cosecant functions 3.2 Integrals involving hyperbolic sine and cosine functions 3.3 Integrals involving hyperbolic and trigonometric functions
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form: