Search results
Results from the WOW.Com Content Network
Mostly compatible with MATLAB. GAUSS: Aptech Systems 1984 21 8 December 2020: Not free Proprietary: GNU Data Language: Marc Schellens 2004 1.0.2 15 January 2023: Free GPL: Aimed as a drop-in replacement for IDL/PV-WAVE IBM SPSS Statistics: Norman H. Nie, Dale H. Bent, and C. Hadlai Hull 1968 23.0 3 March 2015: Not free Proprietary: Primarily ...
Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
A drawback of polynomial bases is that the basis functions are "non-local", meaning that the fitted value of y at a given value x = x 0 depends strongly on data values with x far from x 0. [9] In modern statistics, polynomial basis-functions are used along with new basis functions, such as splines, radial basis functions, and wavelets. These ...
GNU Octave is a scientific programming language for scientific computing and numerical computation.Octave helps in solving linear and nonlinear problems numerically, and for performing other numerical experiments using a language that is mostly compatible with MATLAB.
In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.
is a reference (standard) resistance value. The Steinhart–Hart equation assumes is 1 ohm. The curve fit is much less accurate when it is assumed = and a different value of such as 1 kΩ is used. However, using the full set of coefficients avoids this problem as it simply results in shifted parameters.
For example, it is easy to show that the arithmetic mean of a set of measurements of a quantity is the least-squares estimator of the value of that quantity. If the conditions of the Gauss–Markov theorem apply, the arithmetic mean is optimal, whatever the distribution of errors of the measurements might be.