Search results
Results from the WOW.Com Content Network
Data about cybersecurity strategies from more than 75 countries. Tokenization, meaningless-frequent words removal. [366] Yanlin Chen, Yunjian Wei, Yifan Yu, Wen Xue, Xianya Qin APT Reports collection Sample of APT reports, malware, technology, and intelligence collection Raw and tokenize data available. All data is available in this GitHub ...
In information retrieval, Okapi BM25 (BM is an abbreviation of best matching) is a ranking function used by search engines to estimate the relevance of documents to a given search query. It is based on the probabilistic retrieval framework developed in the 1970s and 1980s by Stephen E. Robertson , Karen Spärck Jones , and others.
RDFLib is a Python library for working with RDF, [2] a simple yet powerful language for representing information. This library contains parsers/serializers for almost all of the known RDF serializations, such as RDF/XML, Turtle, N-Triples, & JSON-LD, many of which are now supported in their updated form (e.g. Turtle 1.1).
Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).
In computer programming, a collection is an abstract data type that is a grouping of items that can be used in a polymorphic way. Often, the items are of the same data type such as int or string . Sometimes the items derive from a common type; even deriving from the most general type of a programming language such as object or variant .
The forward index is sorted to transform it to an inverted index. The forward index is essentially a list of pairs consisting of a document and a word, collated by the document. Converting the forward index to an inverted index is only a matter of sorting the pairs by the words. In this regard, the inverted index is a word-sorted forward index.
The BitFunnel paper describes the "matching problem", which occurs when an algorithm must identify documents through the usage of keywords. The goal of the problem is to identify a set of matches given a corpus to search and a query of keyword terms to match against.
Prediction by partial matching (PPM) is an adaptive statistical data compression technique based on context modeling and prediction. PPM models use a set of previous symbols in the uncompressed symbol stream to predict the next symbol in the stream. PPM algorithms can also be used to cluster data into predicted groupings in cluster analysis.