Search results
Results from the WOW.Com Content Network
Let c be the number of concatenation of the regular expression E and let s be the number of symbols apart from parentheses — that is, |, *, a and ε. Then, the number of states of A is 2s − c (linear in the size of E). The number of transitions leaving any state is at most two.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
Suppose for a given alignment of P and T, a substring t of T matches a suffix of P and suppose t is the largest such substring for the given alignment. Then find, if it exists, the right-most copy t ′ of t in P such that t ′ is not a suffix of P and the character to the left of t ′ in P differs from the character to the left of t in P.
In the array containing the E(x, y) values, we then choose the minimal value in the last row, let it be E(x 2, y 2), and follow the path of computation backwards, back to the row number 0. If the field we arrived at was E(0, y 1), then T[y 1 + 1] ... T[y 2] is a substring of T with the minimal edit distance to the pattern P.
The array L stores the length of the longest common suffix of the prefixes S[1..i] and T[1..j] which end at position i and j, respectively. The variable z is used to hold the length of the longest common substring found so far.
The best case is the same as for the Boyer–Moore string-search algorithm in big O notation, although the constant overhead of initialization and for each loop is less. The worst case behavior happens when the bad character skip is consistently low (with the lower limit of 1 byte movement) and a large portion of the needle matches the haystack.
find(string,substring) returns integer Description Returns the position of the start of the first occurrence of substring in string. If the substring is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE. Related instrrev
Regular expressions are used in search engines, in search and replace dialogs of word processors and text editors, in text processing utilities such as sed and AWK, and in lexical analysis. Regular expressions are supported in many programming languages. Library implementations are often called an "engine", [4] [5] and many of these are ...